

Advanced 3D Fabrics for Composites

Fredrik Winberg Chairman, CEO, Co-founder - Biteam AB, Sweden

> DITEAM São Paolo, 12 November 2014

Composite material = Textile + Matrix

Textiles are central to composites as they provide:

- Lightness

- Mechanical performance
- Reliability
- Functionality
- Shape and dimensions

Textiles Drive Composites' Evolution

Type 1	Type 2	Туре З	Type 4
Short fibers	Filaments	2D Fabrics	3D Fabrics
No integration	No in-plane integration	In-plane integration	Through- thickness integration
Prone to delaminate in all directions	Prone to delaminate in two directions	Plies prone to delaminate in one direction	No plies to delaminate

CENTRO DE PESQUISA E INOVAÇÃO SUECO-BRASILEIRO

D

Next generation composites

4thAnnual

Meeting

3D Fabrics for Next Generation Composites

Suitable for primary load bearing application They achieve the main requirements:

- High reliability through delamination resistance
- Increased mechanical performance
- Near net-shape and dimensions
- Cost effectiveness
- Easy handling and use
- Enabling quick product prototyping

Latest Advancements in 3D Fabrics

Two types of 3D fabric pre-forms are needed for primary load bearing applications

Profiled Cross-section Beams

They are solutions for:

- Modular construction
- Stiffening
- High impact absorption

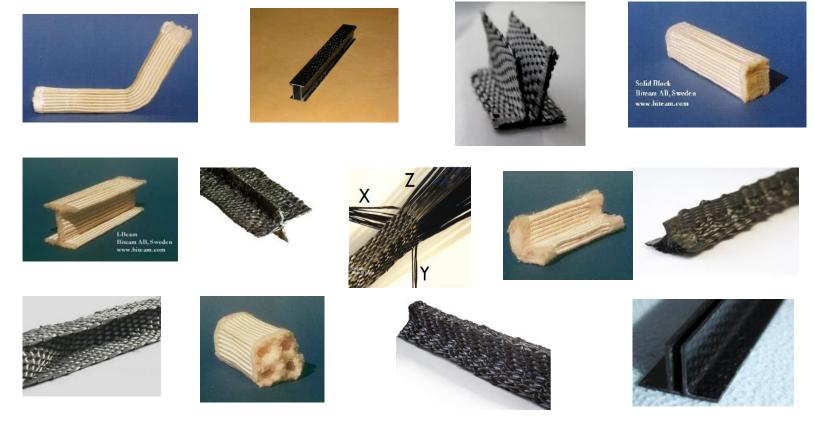
Ready Object-like Items

They are solutions for:

- Machine-able components
- Jointing/fitting
- Functionally moving parts

New Technologies for 3D Fabrics

Innovative 3D fabric-forming processes developed Fundamentally different working principles


3D-Weaving

Add-on Weaving

Uniaxial Noobing

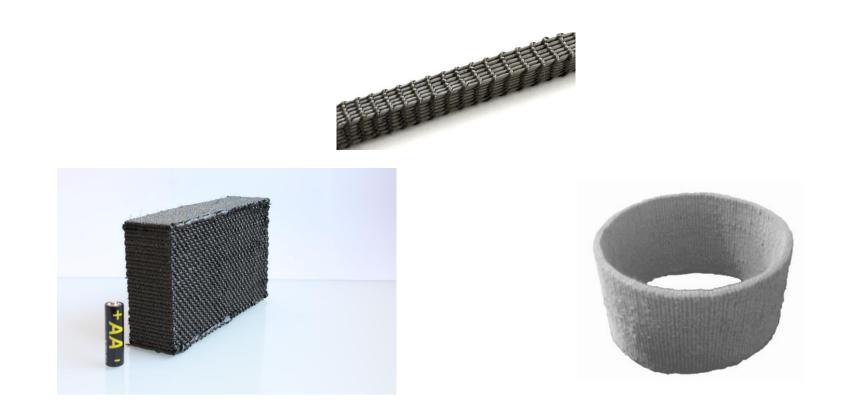
- Direct profile production
- Fiber orientation 0/90/90
- Solid, shell, tubular types
- Direct profile production
- Fiber orientation 0/90/90/+/-
- Solid, shell, tubular types
- Direct close to object-like form
- Fiber orientation 0/90/90
- Solid

Profiled Beams from 3D-Weaving

Solid, shell, tubular type profiles directly producible

4thAnnual

Meeting


Profiled Beams from Add-on Weaving

Beams with fiber orientations in Flanges 0°/90° and Web +/- 45°

Object-like Items from Uniaxial Noobing

Rods, bars, cubes, plates, brackets, bearing housing etc. directly producible

eting

PESQUISA E INOVAG

Biteam in EU Projects

Modular Joints for Aircraft Composite Structures

Cost Effective Reinforcement of Fastener

Partners:

-

- Biteam, Sweden
- KTH (Royal Institute of Technology) Sweden
- Dassault Aviation, France
- Eurocopter, Germany
- EADS/Airbus Corporate Center for Research

Germany and France

- EADS (Deutschland GmbH, Military Air Systems) Germany
- **SABCA (**Société Anonyme Belge de Constructions Aéronautiques) Belgium
- -- **DLR** (Deutsches Zentrum für Luft- und Raumfahrt e.V.) Germany
- UP (University of Patras) Greece
- VZLU (Vyzkumny a zkusebni letecky ustav, a.s.) Czech
 Republic
- and others

Biteam in SAAB Aerospace GF Demo Project

CENTRO DE PESQUISA E INOVAÇÃO SUECO-BRASILEIRO Partners:

- SAAB Aero
- BITEAM
- ELITKOMPOSIT
- NOVATOR
- CREO Dynamics
- EXOVA LTD, UK
- SICOMP
- COMPRASER Labs
- KTH (Royal Institute of Technology)
- LTH (Linköping University of Technology

Biteam's Academic Partner

Dept. of Aeronautical and Vehicle Engineering

Division of Lightweight Structures

Royal Institute of Technology, Stockholm

Internationally recognised leading actor in the growing segment of 3D fabrics

Demonstrated production methods through working prototypes

Patented processes and materials

Exhibiting annually at JEC Show, Paris, since 2001

3D structures with through thickness fibres enables a new way of thinking when designing composites.

The new 3D technologies are still in its childhood where we only have scratched the surface of its opportunities. The full potential and possibilities of these 3D technologies are yet to be discovered!

Thank you for your attention!

